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1. SMPLEX METHODS
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is conveniently exhibited in the tableau
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. In the dual licear programs (1.1) or their tableau (1.2) ¥5 ¥1» « . o5 ¥mp
the basic variables of the primal program are expressed in terms of

the nonbasic variables; similarly, Xg Xm.ts -+ ¥men

the basic variables of the dual pregram. are expressed in terms of

%y, 5 5.y Xy the nonbasic variables.

- A pivot step on (1.1) or {1.2) with pivot entry ajj =0 {i.]
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Gaugs-Jordan or complete elimination step which simultaneously solves
the Ith (row) equation of the primal for ¥m.j and the jth {column) equation
of the dual for xy. and uses these equations to eliminate ym.j and x; from
the remaining row and column cquations at the cost of introducing yj and
Kmej- The ¥Yme) and xj thereby become basic variables and yy and Xrmys)
‘ponbasic variables. The pivot step with pivot entry o = zj; =0 takes the
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the other marginal variables and labels remaining in the same positions.

* Successive tableaus obtained by pivet steps simply reexpress the original
palr of dual linear programs through different partitions into sets of basic
and nonbasic variables. Any such tableau has the form
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A MUTUAL PRIMAL-DUAL SIMPLEX METHOD 19

where the primed variables are a rearrangement of the original variables
and the primed cntries are determinad by the succession of preceding pivot
steps. Basic solutions to both programs are associated with any tableau
{1.5); they obtain by setting the nenhasie variable equal to zero, thereby
determining values for the basic variableés ¥i= “aly e ¥m T ~ Ao

Yo = ady = Xgr Xpnet = 3g10 <« Xhen = Agn. 1 =~agp 200 ..
feasible primal solution obtains; if agg 20, ..., agny 2 0 a basie feasible
dual solution ohtains, If both primal and dual basic feasible solutions ob-
tain, then they constitute optimal solutions to the programs.

+ A simplex method for solving a pair of dual linear programs is a {inite
gequence of tableaus exhibiting equivalent pairs of dual linear programs
obtained by successive pivot steps, with preseribed pivot entry choice
rules, which obtain a tableau exhibiting optimal solutions to both programg,

-or the noncompatibilily of the primal and/or dual constraints. Letting @

dencte nonnegative entries, and & nonpositive entries, these cases can be
exhibited in tableau form:
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20 MATHEMATICAL PROGRAMMING

M A primal {dual) simplex method is a simplex method beginning with a
tableau exhibiting a primal {dual) basic feasible solution with pivot steps !"
which maintain primal (dual) feasibility in each succeeding tabieau. A }
primal (dual) pivot choice rule is as foilows: :

If o tableau {1.5) does not exhibit optimal solutions to both programs
_ there must exist a aéj < 0 for some } (a a;g > 0 for some i}. Either
- {2} every entry In the column of a&j < 0 is nonpositive {every eniry & [
in the row of aly > 0 is nonnegative) or (b) there exist positive e
(negatlve) entries. (a) The tableau exhibits the noncompatibility of o D
the dual constrains {of the primal constraints). N
(b} Choose as pivot entry akj > 0 (ajg < 0} satisfying '

[] . v ? ¥
o _ max “so (anl . max aos)
Ty Tt - DN T
akl 2gj >0 agj g  Ajs < 9 8-15‘

1f an initial tableau does not exhibit a primal (dual) basic feasible solution
some special device is introduced cnabling consideration of an allied
problem whose solution provides a primal (dual) basic feasible solution
for the original problem. The eriginal Dantzig method (1] is a primal
simplex methed; the Lemice paper {5] describes a dual simplex method.
The proofs for termination of a simplex method in a finite number of
pivot steps use the fact that any tableau is uniquely determined by its
associated nonbasic variables (of primal or of dual programs) and that
there exist at most (MM = (M) possible sets of nonbasic variables.
Then any pivot steps assuring that no tableau is ever repeated guarantees
finiteness. The finiteness proof for a primal (dual) simplex methed in
which no *‘degeneracies” occur, i.e., in which a{,} <0, i =0 (ao'j >0,§ =0
iz clear, for each pivot step strictly decreases (increases) the value of
agy and thereby assigns an order to the sequence of tableaus. If, however, i
degeneracy cceurs, some ferm of lexicographic order must be infroduced

to avoid the possibility of eycling.

2. A MUTUAL PRIMAL-DUAL SIMPLEX METHOD

We describe here a simplex method for directly sclving any pair of
dual linear programs (1.1} or (1.2}, The method spectfies pivot choices for
any tableau whether feasible or not, and degenerate or not, which lead to a
gableau éxhibiting a primal feasible solution {or, primal infeasihility) and
then to a tableau exhibiting optimal solutions to both programs (or, primal
objective unboundedness and dual infeasibility}. This is accomplished by
using a primal simpiex pivot choice rule until primal degencracies occur;
then a dual simplex pivot choice rule is used on a subtableau corresponding
go primal zero valued basic variables until the degencracies are resolved,
If ““sub-dual degeneracies' are or come to be present in the subtableau, a
primal simplex pivot choice rule is used on a sub-subtableau untii these
degeneracies are resolved, and so forth. The hierarchy of tableau, sub-
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. tableau, sub-subtableau, etc., is used to establish a hierarchy of goals

which are associated with every tableau. Every pivot step leads to a
strict “improvement’” in one of the goals, with goals higher in the
hierarchy remaining unaffected. This serves to order the scquence of

" gableaus, thus assuring termination of the mcthod in a finite number of

pivol steps. - -

Every tableau {1.5) in the sequence of tableaus cbtained by successive
pivot steps has associated with It a hierarchy of numbered subtableaus each
with a distinguished entry {and hence row and column). Odd numbered sub-~
tableaus k have the form

R
t
(? I . {“*primal or row
e : feaslble form™)} (2.1}
o 1 )

with ofk) 2 1, the number of rows, and ~g(k), the value of the distinguished
entry. Even numbered subtableaus k have the form

T
] @ ® g a @
ST W
}
{ N {f*dual or col-
] uamn feasible
: form"’) {2.2)
t
;

with o) 21, the number of columns, and g{k), the value of the distin-
guished entry.

The hierarchy of subtableaus associated with a tableau is initiated as
follows. Subfablezu 1 consists of all columus and all rows of (1.1) with
2, £ 0, with distinguished entry some app > 0 (if all ajy 20 and the entire
tableau is in primal feasible form, the entire tableau is taken as “gub~
tableau 1'7). Given any tableau suppose a subtabieau k In primal {dual}
feasible form has been defined with distinguished row R and column C.
H C {(if B) contains zeros and R is not all nonnegative {C Is not ali non~
positive), a subtableau k + 1 in dual {primal} feasible form is defined as
conslsting of rows {columns) corresponding to the zeros of C {of R),
columns (rows) eorresponding to the nonnegative entries of R (non-
positive entrles of C), with distinguished eniry some negative entry of R
(some positive entry of C). Schematicatly,
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where the whole dlagram represents a primal feasible form subtableau k,
and the subdiagram enclosed in solid lines a dual feasible form subtablieau
k+1,

Assoclate with any tableau and its subtableaus a hierarchy of goals with
goal k (k = 1, 2, ...} being to pivot to obtain a new tableau whose new sub-
tableau k (if it exists) has ofk) larger, or, has afk) unchanged but g{k)
larger; while «{i), () for i< k remain unchanged.

Suppose, now, that we have reached the pth tableau with entries ail}
along with its well-defined hicrarchy of subtableaus and their associatled
values (op {k), Bp (k). We describe the choice of pivot entry to obtain the
{p + 1)"th tableau and the hierarchy of subtableaus associated with the
(p + 17th tableau. -

-

Rules

Suppose the subtableau with highest index K is In primal (dual) feasible
form. . :

“{a) Apply the primal (dual} si'mplex pivot choice rule (see above) to the
7 subtableau K. Maintain same hierarchy of subtableaus, except K.
Redeflne K and any subsequent ones if possible.

If rule (a} is not applicable then one of the two possibilities {b)
or {c) must hold.
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1

Choose as pivot entry the dls\tlnguished entry. Maintain same
hierarchy of subtableaus, except ¥ ~ 1 and K. Redefine K—-1and
any subsequent ones if possible.

{c)

Choose as plvot entry the negative (positive} entry in the distin-
guished row (column) whose column is nonpositive {whose row is
nonnegativey. Maintain same hierarchy of subtahleaus except K.
Redefine K and any subsequent ones if possible.

Finally, if ever the choice of pivot entry is an element of the
first row (some a%) or of the first column (some aipo)' stop.

1f the process is stopped bacause the choice of pivot entry Is aopo
solutions to both programs obtain; if it is stopped because the choice
of pivot entry is some a%, the primal or row program has no feasible
golution; if it Is stopped because the choice of pivot entry is some a%,
the primal program is in feasible form but the dual or column program
has no feasible solution.

If the pivot entry is chosen according to (a) either there is no Kth sub-
tableau or ap.g (K} 2 ap (K and if ap. (K) = oy (K} then Bg. (K > 85 (K)
{due to the absence of Hth degeneracies’); white ap, (i) = ap (i) and
ﬁp,i(i) =8 (i) for i < K since the pivot entry has zercs in rows and
columns that could have an effect on these values. If the pivot is chosen
according to (b) either there is no (K — DY subtableau or
apet (K~1)>a, (K ~ 1) {sec subtabieau in (]); while again, and for the
same reason, ap,l(i) = ap(i) and By, (i) =g ) for { < K — 1. Finally, if
the pivot is chosen according to (¢). either there is no KB subtableau or
ﬂpr(K) > ozp(K) [see subtableau in ()], while again Cpet 1y = orp(i} and
ﬂp”(i) =B i for i < K. Therefore, this choice of pivot entry and as-
gignment of subtableaus always leads to strict improvement in some goal,
thereby ordering the sequence of tableaus obtained in successive pivot
steps. As noted above, this suffices to assure termination of the method
in a finite number of pivol steps.

A. W. Tucker has pointed out that the inductive counterpart of this
conatruction leads to a particularly simple and appealing proof of ter-
mination. The induction 18 made on the number mw+n of primal {or dual}
variables.

g e
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8, SOME REMARKS

4 it is perhaps of interest to review the primal-dual algorithm of
Pantzig, Ford, and Fulkerson [2} to enable comparison with the algorithm
proposed here, By our definition the primal-dual algerithm is a simplex
method applicd not directly to the problem as stated but to an “extended”’
problem and with rather special pivot choice rules.

The problem to be solved and its dual a3 posed in (2] ts

i Primal (Row) Program

; Minimize Maximlize )

' Yo =20a¥m.t -t amYmen Ko = Ryyg o0 ¥ Xemdmg

! gonstrained by eonstralned by (3.1)
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a

: where it is assumed that the dual program has a feasible solution (if not,

- . : the extra variable Ym.ner = 0 and constraint ypmee* ..o * Ymen * Ymenst
= amet,0 Wih amapo arbitrarily large can be added to the primal pro-

- gram, thug assuring an easily found initial feasible solution to the new

dual problem). An ‘‘extended” problem and its dual is then defined which

can be exhibited in the tableau

e " '
4 y s ooy Extended Primal Program
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G F7%p | Oy © %% O TN
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13
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Dual to
Extended Primal Program
i . Here zg =y * +«-+ym le tobe minimized subject to the row equations
and y(Z0 ..., Ym.n 20, and gy is to he maximized subject to the
column equations and oy 20, ..., ¥men = 0. Since aj Z0, (3.2} is In

primal feasible form. Notice that a feasible solution exists to the primal

i program (3.1) only if min z¢ = 0.
- . The primal-dual algorithm can be deseribed as consisting of a finite
sequence of tableaus, starting with {3.2), obtained by successive pivot
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-~ ateps. With every tableau Is asscciated a {not necessarily basic) feasivle

golution {xo, b ST Xm*n} to the dual or column program {3.1). Then,
given any tableau and its associated {xo, Kir «v s xm,n} a primai pivot
choice rule isused onasubtableau consisting ofall columns except for those
corresponding to yme»j for which Xp.5 >0 =1, ..., n. If a primal
plvot cheice cannot be made the subtablieau can only be in {‘optimal’’}
form (1.6} and one of three cases for the complete tableauy must hold:

{a) The distinguished entry has value ¢

(b) The distinguished entry has positive value and the dlstinguished
row some negative entry

(c) The distinguished entry has positive value and the distinguished
row all nonnegative entries.

If {a) occurs the values exhibited for ypm.1 +-+» ¥mpe+n (0 the tableau and
the associated values for {xg Xg ..., xman} constitute optimal selutions
to the dual programs (3.1). This is easily established since these values
are feasible and they make % = yg. } (b) occurs then a new feasible
solution to the dual program (3.1) with values {Xp Xy -+ .2 Xman/

is associated with the whole fableau, with X > x;. Namely,

. Xm,,j .
Xk = Xg + oy, e = min {(>0)
Omej <0 Trnvj
g=1,....n {3.3}

where o) is the value exhibited by the tableau of the variable o. (This
step can easily be described as a *‘partial pivot step’ in which the
values of the x) are altered by the values of the o). If {c) occurs then
the minimum valtue of z, is attained but is positive, implying no feasible
solution to the primal problem (3.1} exists.

in *‘geometric language' the primal-dual algorithm defines a sequence
of successive neighboring vertices or extreme points of the convex
polyhedron defined by the constraints of the extended primal program
(3.2). It also defines a sequence of feasible points in the dual program
{3.1) space which are not, in general, extreme. In fact the straight line
joining two successive such dual feasible points idefined by (3.3} usually
lies in the interior of the dual convex polyhedral region {3.1), while the
peints themselves (except possibly the first) lie on some face of the
polyhedron. In contrast, the mutual primal-dual simplex method defines a
sequence of successive neighboring points (vertices after feasibility is
achieved) of the convex polyhedron defined by the constraints of the
original primal probiem and visits only extreme points. Although there is
no logical basis for comparison, intuition would secm to indicate that the
computational advantage resides with *‘sticking to extreme points of the
original probiem.””

Of course, the primary interest of these methods is in their application
to highly “‘degenerate’” problems, for example the assignment and trang-
portation problems. The primal-dual algorithm applied to an assignment

[N
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26 MATHEMATICAL PROGRAMMING

or transportation problem is the Hungarlan method {4] {though it must be
said that it was the ideas of the Hungarian methoed which led to the de-
velopment of the primal-dual algorithm}. Contrary to widely held
bellefs, the Hungarian method (as described in [B]) can be described as a
simplex method in much the same way as the primal-dual algorithm has
been above. In fact, every operation as given in [6] has its simplex
methed counterpart. It is hoped (and expected) that the application of the
fdea of the mutual primal-dual simplex method to the assignment and
transportation problems will lead to a new computational method which
may better the elficiency of the Hungarlan methed, for in these
problems the geometric considerations ailuded to above appear to be
important. Finally, the application of these ideas fo the network flow
algorithms, and particulariy the *‘cut of kilter' method of Fulkerson {3},
should lead to further insight concerning the relationship between these
specialized algorithms and simplex methods.
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